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Abstract

Often in chromatography, a compound which participates in the retention mechanism is added to the mobile phase. This
permits control of the retention factors of the analytes and allows their indirect detection. Injection of large volumes of
solutions having a composition different from that of the mobile phase causes perturbation of the equilibrium between the
two phases of the chromatographic system, and may result in large positive or negative system peaks when the additive
signal is monitored. If the equilibrium behavior is accounted for by competitive Langmuir isotherms, the positive bands,
which contain an excess of the additive, are Langmuirian-shaped as in the classical elution case, while the large vacancy
bands have an anti-Langmuirian profile. An explicit analytical solution is derived within the framework of the ideal model
for the profiles of large-size pulses and vacancies. This solution permits the easy calculation of the retention times of the
different parts of the bands, i.e., of its shocks and diffuse boundaries. This solution provides also a more profound
explanation of the formation of the large system peaks than available so far and of their distinctive properties as compared to

those of large-size bands in classical elution.
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1. Introduction

System peaks arise in chromatography whenever
an injection is made in a system where the mobile
phase is a solution containing one or several addi-
tives which can equilibrate between the mobile and
the stationary phase, and which can be involved in
the retention mechanism [1]. This is the case, for
example, when small amounts of an alcohol are

*Corresponding author. Address for correspondence: Department
of Chemistry, University of Tennessee, Knoxville, TN 37996-
1600, USA.

added to methylene chloride in normal-phase chro-
matography, or when a buffered solution of an
organic acid or base whose structure includes a large
hydrophobic group is used in ion-pair chromatog-
raphy. Because the concentrations of these additives
are relatively large, their equilibrium behavior is not
linear. Accordingly, competition takes place between
the additives and the sample components; this causes
several effects which would not arise in linear
chromatography. First and foremost, competition is
responsible for the decrease in the retention factors
of the analytes compared to their values in the pure
weak solvent, and this is usually why the additive is
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being used'. However, a number of side effects take
place in the same time, whose recognition depends
on whether the detector responds or not to changes
of the additive concentrations.

Because of the competitive nature of almost all
isotherms at high concentrations, the injection of the
sample causes the local equilibrium concentrations of
the additives in the stationary phase to decrease.
Once the sample components are gone, the initial
equilibrium is restored. Thus, co-injection of a
certain amount of additives is performed simultan-
eously with sample injection onto the column. It is
followed by adsorption (i.e., by a negative injection)
of the same amount of additives. The amount of the
additives involved in this perturbation is a function
of the sample composition. These phenomena lead to
a set of concentration signals which may be rela-
tively complex but are now well understood in
analytical chromatography. In this case the samples
are small, and hence the perturbation can be treated
as linear, using first-order expansions [2].

Discovered experimentally by Fornstedt and
Porath [4] and from a theoretical viewpoint by
Helfferich and Klein [5], system peaks in analytical
chromatography have been discussed abundantly in
the literature. Applications have been detailed by
Schill and co-workers [6—8], Crommen et al. [9,10]
and Bidlingmeyer et al. [11,12]. Major theoretical
contributions have been made by Schill and co-
workers [13,14], Knox and Kaliszan [15], and Levin
and Grushka [16,17]. A thorough theoretical analysis
has been published by Golshan—Shirazi and Guio-
chon [2].

The results of this perturbative approach can be
conveniently summarized as follows. In addition to
the expected peaks of the sample components, peaks
of the additives are observed. If the sample contains
p components, there will be, for each additive, p + 1
additive peaks. Each additive peak is eluted at a time
which is characteristic of the additive. The retention
factor of this peak is proportional to the slope of the
additive isotherm at the additive concentration in the
mobile phase. The other p additive peaks co-elute

' Note that in reversed-phase chromatography this decrease arises
essentially from the increased solubility of the analytes in the
mobile phase; in this respect this technique is different from other
chromatographic techniques [2,3].

with the p peaks of the sample components. Their
size is proportional to the amount of the corre-
sponding component in the sample. These peaks are
usually ignored because in most applications the
additive is selected for giving no detector response.
However, in indirect detection [7-12], the phenom-
enon is used to quantitate those analytes which give
no detector signal by using an appropriate additive
with a large detector response factor.

Although the behavior of system peaks is well
understood now in analytical chromatography, it is
not in the preparative area. The injection of large-
size samples results in major perturbations of the
additive concentrations, and causes the profiles of the
feed component bands to be more complex than
when a pure mobile phase is used. When the sample
size is progressively increased, the band profiles turn
from a nearly Gaussian shape to one which is
Langmuirian at moderate additive concentrations,
and it is not exceptional to see anti-Langmuirian-
shaped bands at high additive concentrations [18—
23]. The latter transition is through Golshanian
profiles which have humps or horns, and may exhibit
front and rear shock layers, with an intermediate
diffuse boundary which sometimes has the shape of a
dome [23]. These profiles were first reported by
Kirkland [24] and by Puncochéafova et al. [25]. They
have been studied theoretically and experimentally
by Golshan—Shirazi and Guiochon [18-21] and more
recently by Fornstedt and Guiochon [22,23].

The latter authors have shown that Golshanian
band shapes arise when the following three con-
ditions are met [22]: (i) the additive is more strongly
retained than the component in the pure weak
solvent; (ii) the concentration of the additive is high
enough for the additive system peak to be eluted
before the component peak; and (iii) the separation
factor of the additive peak and the component peak
is low, and the sample size large, so the two additive
bands, the primary additive system peak and the
component system peak interfere. In the course of
their study, Fornstedt and Guiochon [22,23] deter-
mined the elution profiles of large-size sample and
vacancy pulses of the additive. In their chromato-
grams (see Ref. [22], Fig. 2), they observed that
samples containing an excess of additive (i.e., posi-
tive injections) give rise to bands that have a
Langmuirian profile, while the vacancies (i.e., nega-
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tive injections) give rise to bands which are anti-
Langmuirian. Furthermore, when the sample size is
increased, the diffuse boundaries of the band profiles
overlap in each of the two series of bands, as
expected (see Ref. [22], Fig. 2), but they do not seem
to originate from the same point.

This result is easy to explain within the framework
of the ideal and the equilibrium-dispersive models
[26]. It provides an excellent illustration of the
usefulness of the ideal model and the shock theory
[26]. Shock theory and its applications to the study
of high-concentration band profiles in liquid chroma-
tography have been discussed by Lin et al. [27]. The
influence of a finite column efficiency results from a
balance between the self-sharpening effects of the
non-linear behavior of the isotherms and the disper-
sive effects due to the finite rate of the mass transfer
kinetics in the column and to axial dispersion. This is
easily explained by the shock layer theory [28,29]
which has been recently shown to predict quite
accurately the profiles of breakthrough curves [30],
at least under favorable conditions [28-30].

The goal of the present paper is to present the
solution of the system of equations of the ideal
model in the case of an additive in equilibrium
between the mobile and the stationary phases (initial
condition) and for the injection of large samples with
an excess or a deficiency of the additive (boundary
condition). Besides its obvious theoretical interest,
the solution of this problem has some practical
importance. It is always possible to dilute an ana-
lytical-size sample in a large volume of solvent
without changing significantly the peak profiles in
linear chromatography, provided the total sample
volume is below half the standard deviation of this
peak (assumed to have a Gaussian profile). The
solvent used for this dilution may have an additive
concentration markedly different from that of the
mobile phase, either higher or lower. It is thus
possible to generate a major system peak and to use
its elution profile as a gradient to compress the peaks
of trace components and improve their detectability
[31,32]. Optimization of this method would become
easier if the influence of the parameters which
control the additive profile is better understood. One
example is the achievement of the maximum pos-
sible compression effect. It has been shown that a
thin shock layer thickness at the rear of the vacancy

profile of the additive is essential for successful
compression of co-eluting peaks of analytes [33].

2. Theory

The basic assumptions of the ideal model are that
(i) the stationary and mobile phase are in constant
state of equilibrium and (ii) there is no axial
dispersion. Thus, the column is assumed to have an
infinite efficiency. Although real columns have a
finite efficiency, this efficiency is high in most cases,
and the influence of the non-linear behavior of the
isotherm becomes the controlling factor of band
profiles at moderate or high concentrations.

2.1. System of equations of the ideal model

The mass balance of the additive is given by

aoC dq oC

W+Far+ 82—0 (O
where C and ¢ are the mobile- and stationary-phase
concentrations of the additive, respectively, ¢ is the
time, z is the column position, F is the phase ratio
(F = (1 — €)/€, where € is the total column porosity),
and u is the mobile phase velocity. C and g are
related by the isotherm equation

q=f(C) (22)

For further calculations in this work, we use the
Langmuir isotherm

_ aC b
9= T55C (2b)
The initial condition is
Cz,t=0)=C, 3

where C, is the additive concentration in the mobile
phase. Since the ideal model assumes that there is no
axial dispersion, the boundary condition is

Cz=0,n=C, 0<r<z, (4a)

Cz=0,0)=C, t <t (4b)

P

where C, is the additive concentration in the injected
sample, and ¢, is the injection duration. Thus, the
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sample is supposed to be a rectangular plug of width
1, and height C,.

2.2. Shock theory

Eq. 1 can be rewritten [24,26] as

9, w3 _
at dg 9z
1+ F36

This equation shows that a velocity is associated to
each concentration. This velocity, u_, is given by

0 (5)

= (6)
u,=——-
z dq
1+ch

As pointed out by Helfferich and Peterson [34],
however, matter does not move in the column at the
velocity u,. Concentrations, i.e., signals or infor-
mation, move at this velocity. Matter, or molecules,
move at the velocity U,, or shock velocity. It can be
shown [26,28] that Eq. 1 can propagate concentration
discontinuities, or shocks, and that the velocity of
these shocks is given by

Ut

1+FA_C

where Ag and AC are the differences between the
stationary- and mobile-phase concentrations immedi-
ately after and before the shock, respectively. In the
case of the propagation of molecules, Ag and AC are
the differ=nces between the local concentration and
the reference concentration (in this case, 0). While
dg/dC is the slope of the isotherm at the additive
concentration, C,, Ag/AC is the slope of the corre-
sponding chord. Thus, U, is always lower than u, for
a convex upwards isotherm.

In the case of a Langmuir isotherm, Eqs. 6 and 7
become respectively

“ = (8a)
(1+bC)*
Uu
U=——"—"3— (8b)
]+ —2
1+ bC

with Fa = kg, the retention factor at infinite dilution.

The velocity associated with a concentration in-
creases with increasing concentration (Eq. 8a). Thus,
since high concentrations cannot actually pass lower
ones, concentrations pile up in the front of the band,
and a discontinuity or concentration shock is formed
and propagates. Behind this shock, the velocity
associated with a concentration decreases with de-
creasing concentration, the concentrations spread,
and a diffuse boundary appears [26].

A rectangular injection has two shocks, one in
front, one at the back. The rear shock is unstable and
collapses, giving rise to a diffuse rear boundary, as
just explained. Each concentration moves at the
velocity given by Eq. 8a, and the retention time of a
concentration C on this diffuse boundary is

L dg
tR(C)=tp+;‘=tp+t0 1+F—CE

=t +1,|1+———
4 °< (1+bC)2>

0=C=(C, &)
The front shock of the rectangular injection is stable
and propagates at the velocity given by Eq. 8b.
However, this shock erodes progressively and its
height does not remain constant. If we consider the
tip of the shock, it belongs to both the shock and the
diffuse boundary. Its velocity as a shock is given by
Eq. 8b. Its velocity as a point on the diffuse
boundary is given by Eq. 8a. Obviously, for the same
value of C, u, > U, hence the point will disappear.
So, Eq. 8b cannot be integrated simply to derive the
retention time of the shock. This time is easily
derived, however, by observing that the band area
must remain constant during its migration [35]. Since
its profile is known, a simple integration gives the
retention time of the band maximum. In the case of a
Langmuir isotherm, we obtain

te®) =1, + o[ 1+ k(1 —V/L)] (10)

where f,=L/u is the hold-up time, and L, the
loading factor, or ratio of the sample size and the
column saturation capacity [L; = nb/(eSLky), where
n is the sample size, a and b are coefficients of the
Langmuir isotherm, L is the column length, and § is
the column cross-section area).
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2.3. Application to system peaks

The propagation of a finite concentration additive
system peak involves both similarities and differ-
ences compared to the classical elution of the same
band in a pure weak solvent. The similarities permit
the straightforward extension of the solution of the
ideal model to the calculation of the profile of an
overloaded system peak. The only difference be-
tween the classical elution problem and the system-
peak problem is in the initial condition. In the
system-peak problem, the initial concentration of the
component in the column is different from 0, while it
is O in the elution problem. The boundary condition
corresponds to the injection of a rectangular pulse of
width 7, of a solution of weak solvent containing a
concentration, C,, of additive, either higher (pulse)
or lower (vacancy) than the additive concentration,
C,. in the mobile phase before and after injection.
These initial and boundary conditions are summa-
rized in Egs. 3, 4a and 4b.

This injection causes a large perturbation of the
additive concentration. Depending on the sign of the
perturbation, either the front or the rear shock of the
rectangular injection is stable.

Profile of a pulse

If the perturbation is positive (C,>C,), the
situation is very much like the one encountered in
elution. The only difference is that now the elution
of the pulse takes place on a plateau concentration of
the component. The velocity associated with a
concentration, given in Eq. 8a, increases with in-
creasing concentration. Accordingly, the front shock
of the injection pulse is stable. It propagates, while
being eroded. The rear shock is unstable, because the
concentration decreases on the band rear and the
retention time of a concentration increases with
decreasing concentration (Eq. 8a). The equation
giving the rear diffuse profile of the band is the same
as Eq. 9. Since the concentration definition is now
changed, we rewrite it as

ko
t.(C)Y=t +t |\l +——
RO=1 0( (l+bC)‘)
C,=C=C, (11a)

This profile ends when the concentration becomes

equal to the additive concentration, C,. Then the
retention time of the last point of the profile is

k/
t(Co) =1, + z0<1 +(1+—;’C07> (11b)

It is shorter than the retention time of the last point
of an elution profile. If the injection band is wide
enough, and a plateau at the injection concentration
is still a part of the elution profile, the shock height
remains constant, and the shock propagates at a
constant velocity, U, given by Eq. 8b, with AC =
C, — C,. Hence

~ 3 aAC 12
Ag=q(C,) —q(Cy) = (1 +bC,)(1+bC,y) (12a)
u
U = e (12b)
T aFsc)1+6Cy)
o ) 2
tR(M)—T() 1+(1+bca)(1+bco) (120)

The retention time of the last point on the injection
plateau, #(C,), is obtained by introducing C, in Eq.
l1a. If the injection pulse width, 7,, is too narrow,
and the retention time given by Eq. 12c is longer
than #(C,), the injection plateau has been completely
eroded away, and the solution is that of a narrow
injection band. In this latter case, the shock erodes
during its migration along the column and its ve-
locity does not remain constant. As in elution, the
retention time of this shock is obtained by integrating
the diffuse boundary from the shock retention time,
t:(M) to the end of the profile at 23(C,). We obtain

1-VL (1 +bCO)>2]

1+bC,

tpM) =1, +t0|:1 +k(’,<
(13)

where L| is an apparent loading factor, or difference
between the amount of additive actually injected in
the sample pulse, and the amount existing in the
same volume of mobile phase, at concentration C,

nb 1,(C,— Cob

=S T ik (14)

L
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Profile of a vacancy

This case is the opposite of the previous one, and
it is impossible in elution. If the additive concen-
tration is lower in the sample than in the mobile
phase, the additive concentrations will be lower than
C, during the entire elution of the perturbation,
which will appear to be negative by respect to the
baseline. Since the velocity associated with a con-
centration decreases with decreasing concentration,
the front shock is now unstable, while all the
concentrations will tend to pile up at the rear of the
profile, and the rear shock is stable. Otherwise, the
equation derived above remains valid, with a minor
change due to the simple fact that the rear shock of
the injection pulse enters the column at a time 7,
later than the front shock. So, the retention time of a
concentration C on the front diffuse boundary is

?

k()
RCY=t 1 +

m) C,=C=C, (15a)

and the profile begins at the time

_ ke
tx(Cy) = t0<1 + I+ bC0)2> (15b)

The retention time of the rear shock of a wide
injection band is given by

— 0
tR(M)—tp+zQ(l + a +bCa)(1+bC0)> (16)

and the retention time of the maximum concentration
of a narrow injection pulse is given by

1+VIL | +bC0)>2] a7

1+5C,

tR(M)=t0[1 +k(’)(

where L/ is defined as in Eq. 14, and is now
negative.

The combination of these equations defines entire-
ly the elution profiles of the high-concentration
bands of additive.

2.4. Calculations

All calculations of band profiles using the equa-
tions of the ideal model given above were carried out
with a simple spreadsheet calculation program run-
ning on a personal computer. The numerical values

of the parameters used in these calculations are as
follows: flow-rate, 1.0 ml/min; column diameter,
0.46 cm; phase ratio, F = 0.215 (thus, # = 0.12 cm/
s); sample volume, 0.25 ml (thus, 1, = 15 s); parame-
ters of the Langmuir isotherm, a =30, 5=0.30
mM ' (thus, g, = 0.10 M).

3. Results and discussion

As a reference, Fig. 1a and b show the elution
profiles of a large size sample on a short column
(L=0.5 cm) and on a long column (L =10 cm),
respectively. In the former case (Fig. 1a), the plateau
at the injection concentration has been eroded away
only slightly. It has completely disappeared in Fig.
b, where the height of the peak is nearly three times
lower than in Fig. la. Note that the velocity of the
point at the rear of the plateau in Fig. la is 1.55
times higher (Eq. 8a, bC, = 0.3) than the velocity of
a zero concentration, which explains the rapid
spreading of the band.

Fig. 2a and 2b illustrate the band profiles obtained
at the end of the same two columns, for the same
injection as in Fig. 1, but when the concentration of
the additive in the mobile phase is constant and equal
to 1.0 mM. Eqs. 11-14 were used to calculate these
profiles. The shape of these profiles and those in the
corresponding Fig. la and 1b are the same. The
retention times of the profiles are shorter because, for
the same deviations from the baseline, C — C,, the
actual concentrations, C, are higher (cf Fig. la and
Figs. 2a, lb and 2b). Therefore, the velocities
associated with these concentrations are larger (Eq.
8a). Also, the Egs. 8b and 12b for the velocities of
the front shocks are different. The quantitative
differences are minor, however, and will be dis-
cussed later.

The band profiles obtained upon injection of a
vacancy of the additive are shown in Fig. 3a and 3b,
for a vacancy size equal in absolute value and
opposite in sign to the size of the pulse injected in
Fig. 1 and Fig. 2, and on the same column, under the
same experimental conditions as in Fig. 2. Egs.
15-17 were used to calculate these profiles. The
band corresponds to a negative perturbation of the
steady additive concentration, and its profile appears
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Fig. 1. Chromatograms calculated with the ideal model, for the elution of a high-concentration pulse of a solution of an additive by a pure
mobile phase. C, =1 mM; F, =1 ml/min (« = 0.12 cm/s); F = 0.21S; sample volume, 0.25 ml (r, = 15 s); parameters of the Langmuir
isotherm, a = 30, b =0.30 mM ~'. Eqs. 8a-10 where used for calculation of the diffuse rear boundaries, and the position of the shocks,

respectively. (a) Column length, L, 0.5 cm. (b) Column length, 10 cm.

to be anti-Langmuirian. The front of the band is a
"diffuse boundary and its rear is a shock.

Fig. 4 compares the band profiles obtained for
three different pulse injections of the same volume,
0.25 ml, on the short column (Fig. 4a) and the long
column (Fig. 4b). The first pulse (solid line) contains
a 1 mM solution of the additive in the weak solvent.
The second (dashed line) and third (dotted line)
pulses contain a 2 mM solution. The first two
injections are made in an ‘‘empty’’ column (i.e., a
column containing the weak solvent without additive
as the mobile phase), as in classical elution (ex-
perimental conditions of Fig. 1). The third injection
is done in a column containing a mobile phase with 1
mM of the additive (experimental conditions of Fig.
2). When the column is short, and the injection
plateau has not completely disappeared, the con-
centration level of the additive in the elution band is

the same as in the injection pulse (Fig. 4a). The
plateau of the first band is at the initial concentration
level of the additive in the third case, ie., 1 mM,
while the plateau of the second and third bands are at
the same level, 2 mM. The latter one, however,
appears on a baseline at 1| mM, so its apparent height
(i.e., above the baseline) is only 1 mM. The retention
time of the front shock of these pulses increases in
the order 1, ;(M) <1, ,(M) <ty ,(M). Obviously, in
elution in a column empty of additive, the retention
time of a larger pulse is smaller than that of a smaller
pulse. The difference between the retention times of
the third pulse and of the other two pulses is
accounted for by the differences between Eqs. 8b
and 12b which give the retention times of their
fronts. Because both the first and third pulse corre-
spond to the actual injection of the same amount of
the component (1 mM solution in a 0.25 ml volume,



70 G. Zhong et al. | J. Chromatogr. A 734 (1996) 6374

22

1.6

1.4
1

Concentration (mM)

1.0

0.8

) 0.2 04 0.6 0.8
Time (min)

1.6

b

1.3

A

1.2

Concentration {mM)

1.0

0.9

~ <

Time (min)

Fig. 2. Chromatograms calculated with the ideal model, for the elution of a high-concentration pulse of an additive by a mobile phase
containing the additive. Eq. 11a was used for the calculation of the diffuse rear boundary, and Eqs. 12¢ and 13 for the calculation of the
position of the front shock in (a) and (b), respectively. Additive concentration in the sample pulse, C, =2 mM, in the eluent, C, = I mM.
Other conditions as in Fig. 1. (a) Column length, L, 0.5 ¢cm. (b) Column length, 10 cm.

ie., 0.25 umole), their areas must be the same.
Because the end of the third pulse profile comes at
the retention time of a concentration of 1 mM
(baseline concentration), it is eluted earlier than the
end of the first pulse elution profile, at a con-
centration of 0. Its front should also elute earlier. In
contrast, the rear boundaries of the three pulses
overlay exactly, provided adjustment is made for the
different concentration ranges, because they are all
given by the same equation (Eqs. 9 and 11a).
When the same pulses are injected on the long
column (Fig. 4b), their injection plateaus erode away
before their elution and the band heights are lower.
The system peak (third injection pulse) is eluted
before the other two elution peaks. In the figure, the
system peak is shown as it would appear above the
baseline (i.e., the concentration C — C, is plotted
versus time). The actual concentrations of the addi-

tive in this peak are obtained by adding 1 mM to the
apparent concentrations displayed in Fig. 4b. The
rear diffuse boundaries of the other two elution
profiles overlay as they do in Langmuirian elution
profiles. The system peak in Fig. 4b has the same
area as the first injection pulse, since both peaks
correspond to the same amount of material injected
onto the column. However, the fact that the elution
bands of the second and third injection pulses have
the same height is co-incidental. Initially, the second
elution band is twice as high as the third band (Fig.
4a). During their migration, the height of the second
band decreases more rapidly than that of the third
one. Because the injection plateau has been eroded
away, the rear diffuse profile of the elution band is
no longer directly connected to the same part of the
system peak (as in Fig. 4a). However, these profiles
are given by the same equation (with the ¢, correc-



G. Zhong et al. | J. Chromatogr. A 734 (1996) 63-74 71

0.6
1

Concentration (mM)

-02

T
0 0.2 04 06 0.8
Time (min)

b

Concentration (mM)
0.8

0.7
L

0.5

<

Time (min)

Fig. 3. Chromatograms calculated with the ideal model, for the elution of a large-size vacancy of an additive by a mobile phase containing
the additive. Eq. 16a was used for the calculation of the diffuse front boundary, and Eqs. 17 and 18 for the calculation of the positions of the
rear shocks of the bands, respectively. Additive concentration in the sample, C, = 0, and in the eluent, C, = 1 mM. (a) Column length, L, 0.5

cm. (b) Column length, 10 c¢m.

tion) and the profiles appear, indeed, to be arcs of the
same curve, as illustrated in Fig. 4c.

Now we want to compare the elution profiles of a
pulse and a vacancy of the same size, but opposite
signs. These profiles are plotted in Fig. 5, in the case
of the long column (same experimental conditions as
for Fig. 3b). The diffuse boundaries of the elution
profiles of pulses and of vacancies of different sizes
would overlay exactly. However, there are differ-
ences between these two series of diffuse boundaries.
First, they originate from different points. This is
clear in the equations of these boundaries (Egs. 11b
and 15b), which differ only by the presence of the
term ¢, in Eq. 11b and its absence from Eq. 15b. The
reason for this lies in the origin of the diffuse
boundary. In the case of a pulse, the diffuse bound-
ary is at the band rear and results from the instability
of the rear shock of the injection profile, which

collapses into a flight of characteristics [26,28,36]. In
the case of a vacancy, the diffuse boundary is on the
front of the band, and results from the instability of
the front shock of the injection. The shocks of the
injection profile penetrate into the column at differ-
ent times, the front followed by the rear at a distance
1,» which explains the different origin of the two sets
of diffuse boundaries. Secondly, the two diffuse
boundaries have the same curvature. In fact, they
have the same equation, and would give two arcs of
the same curve if one is moved towards the other in
the direction parallel to the time axis, by a distance
1,- As a consequence, the profiles of a pulse and a
vacancy of the same size cannot be overlaid. The
rear of the pulse elution profile bends upwards, away
from the baseline when moving towards the front
shock, while the front of the vacancy elution profile
bends in the direction of the baseline when going
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Fig. 4. Overlaid chromatograms showing the elution profiles calculated with the ideal model tor three pulses of an additive eluted by
different mobile phases on the same column. Solid line: C,=0; C, =1 mM. Dashed line: C, =0, C, =2 mM. Dotted line: C, =1 mM,

C, =2 mM. Same experimental conditions as in Figs. 1 and 2. (a) Column length, 0.5 cm. (b) Column length, 10 cm. Concentration origin
for all profiles, the baseline, i.e., plot of C — C, versus time. (c) Same as for (b), but plot of C.
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Fig. 5. Chromatograms calculated with the ideal model for a large
pulse of an additive, and for a vacancy of the same amount, both
eluted by a mobile phase containing the additive. C, =1 mM;
C, =2 mM (pulse) or C, =0 (vacancy). Column length, 10 cm.

towards the rear shock. In contrast to a superficial
impression, the two series of profiles are not
symmetrical with respect to the point at C = C,,
t=1,12+t,[1 + kg/(1 + bC,)’).

The chromatograms shown in Figs. 1-5 have been
derived using the ideal model and the equations
given above, with a simple spreadsheet program
which allows a rapid calculation of the numerical
solutions and a fast drawing of the profiles. This
procedure supplies an excellent approximation of the
elution profile of a large-size system peak, positive
or negative, as long as the column efficiency exceeds
a few thousand plates, which is quite often the case
in analytical applications. However, the ideal model
assumes that the column efficiency is infinite while
all actual columns have a finite efficiency. Thus, the
procedure supplies only an idealized caricature of the
actual profiles. In a companion paper we show how
the equilibrium-dispersive model permits the calcula-
tion of profiles which are in close agreement with the
experimental results |37].
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